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I
I. Introduction and Sumuary

In this paper, a two-sample, two-stage non-parametric estima-

tion problem will be studied. The parameter e - O(F, G) under

consideration is estimable (i.e., there exists an unbiased estima-

g tor 0 = $(XI,.. .,Xr; I''..".,YG) of 0). 0 is a function of independ-

ent observations from two populations with cumulative distribution

Sfunctions .'(X) and G(Y). (Hence, it is called a two-sample prob-

lem.) 2hc functions F(X) and G(Y) will be restricted to be members

of a specified class D of' pairs of cumulative distribution func-

tions, described in the context. The total number of observations

from the two populations X and Y will be a fixed number N. The

I estimation procedure is carried out in two stages. First, take M

observations from each of the populations; then, allocate the

remaining N - 2M observations to the same populations. The method

of allocation utilizes the information from the first stage obser-

vations.

I A two-stage estimator, represented by U', will be introduced.

It is a U-statistic with random sample sizes. (See (4] on general

U-statistics. U' is defined in Section 3.) One of the main re-

[ sults (presented in Section 4) is that, under certain conditions,

the variance of UW approaches asymptotically a particular variance

V V0 . This particular V0 (defined in Section 2) is the minimized

asymptotic variance of a one-stage estimator D. In other words,

it is computed (see Section 2) when the best one-stage allocation

of N observations to the two populations is made with the help of

a partial or even complete information about the distributions

I F(X) and G(Y). Such an information about F and G is represented

I
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by the "nuisance parameters" blo 0 blo(F, G), bol a bOl(F, 0),

etc., defined in Section 2. Thus, in partieular, V0 can be

computed only when b1 0 and bOl are known. Moreover, using these

parameters, it will be shown in Section 2 that V0 is the smallest

among the variances of all one-stage estimators of 0. However, no

prior knowledge of b1 0 and b01 is required to compute Var(U'), and

it will be proved in Section 4 that Var(U')/V0 converges to unity

as N approaches to infinity.

A brief review of some basic properties of one-stage U-

statistics as well as some conventions on notations will be also

presented in Section 2.

In Section 5, the "optimal" choice of the first stage sample

size M relative to the fixed total sample size N is discussed.

Three cases with different conditions on the unbiased estimator *

will be considered. In each case, it is found that the "optimal"

choice depends on the specific conditions. (For details, see

Section 5.)

Section 6 contains some examples. Here, to each 6(F, G), the

cor'esponding estimators for b1 0 and b0 1 together with their be-

havior under different conditions on F and G, will be given. The

examples include the cases that the above described two-stage

estimation procedure can be applie4 as well as cases where it can-

not be applied.

Section 7 contains a proof of the asyMptetic normality of U'.

In Section 0, It is indicated that this two-stage two-sample

estimation procedure can be extended to k-sample two-stage estima-

tion with similar results for k > 2.
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In the last section, Section 9, another two-stage two-sample

Sestimator e will be Introduced. It is based on the comined ob-

i servations of both stages of total N observations, as compared to

U', which is based on the second stage of N - 2M4 observations only.

jU is biased while U' is unbiased. Since U' is of a different na-

ture as compared to U1, the corresponding proofs are much involved.

The results on V' will be summarized, without proof, in this

section.

The technique of two-stage estimation has been discussed in

several papers. Stein (11] has used a two-stage procedure to de-

termine confidence intervals of a pre-assigned length for the mean

of a normal population with unknown variance. Putter [7] used

such a technique to estimate the mean of a stratified normal popu-

lation. Robbins [9] discussed a two-stage procedure from the

point of view of the design of experiments. Later, Ghurye and

Bobbins [3] used a two-stage technique to estimate the difference

between the means of two normal populations (or some other speci-

fied populations). Richter [8] discussed the estimation of the

common mean of two normal populations. The results of the present

paper, then, are to generalize these two-stage procedures in two

ways. First, the underlying cumulative distributions F, G are

members of a larger class of distributions. Secondly, the under-

lying parameters G(F, G) are not restricted to population means

or fuactions of means.

2. Some Basic Properties of One-stage U-statistics and Notations

Before formulating the problem, a short review of some basic

properties of U-statistics is given in this section, based on



references (4, 10]. For convenience of presentation, some

specific notations are adopted here as well as throughout this

paper:

(1) k will be used as a generic constant, which may represent

different values according to the context.

(2) el will be used as any small positive real number, Its

value will be specified in various situations.

(3) Vectorial notations will be used such as:

r = (Xl,...,Xr), where r - 1, 2,

Xr,j = (X+, 1 1 ... ) X r)

2,j " ¢,%,1 ..,JX xj)

Here, the subscripts of the coordinates are a permutation of some

set of integers, which will be specified in the context.

In order to give a definition of a two-sample one-stage U-

statistic, let us consider two populations X and Y with cumulative

distribution functions F and G respectively. Also, let us con-

sider a real valued estimable parameter e - G(F, G).

By the statement that 9 is estimable, we mean that there

exists a function 0(r 'ta) such that, with the Integration taken

over all values of X's and Y's,

(2.1) O(r, Q f)dr(X 1) ... .F(.r)d.(Yi)...dG(YS).

Here, l%, t are r and s independent observations from population

X and Y respectively. Moreover, all F's and G's are restricted to
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be members of a specified class L of pairs of cunulative distribu-

tion functions of the populations X and Y.

Without loss of Generality, the function s, called the kernel,

I can be assumed to be srrme'or:Lc in its X arguments and its Y arNu.-

( ments separately. (See (4, 10).) Furthermore, since any function

of r X's and s Y's can be written as a function of max(r, s) of

SX's and Y's, we shall assume r -a .

Definition ([2, 4, lo])

k A U-statistic associated with the pa'nmec.'r 0 tund the kernel

S$, defined as above, in a sample ou! m ojscrvationc on population X

and n observations on population Y for m, n > r, is defined as:

(2.2) U =u(i; n((i 1 ;Y )
MI mn (rmr r

where the suimmation is taken over all sets of integers such that

I <iI< ... <Jr <a; 1 < 1l< ... < jr< .*

Now, in order to write the variance of U , we define, for

cq~~~m dn,1 ) r

I
ý ' k r ; r 0( i ; 1

kr,c; id ýr~

i.e., the conditional expected value of $1, given and

Iote that 00 o 0. Also define

1(2.4) b ~:.,[ 0(1x;

I It can be deduced (2, p. 224, p. 257] that

I
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b cd '[0(tjr ;tJr )'#(kr ;tr

where (1 1 .."ir) and (kJ,...,kkr) are any two sets of r distinct

integers from (1, 2, ... , m) and c is the number of integers com-

mon to the two sets; (Jl ... jr) and (ti, ... Itr) are any two sets

of r distinct integers from (1, 2, ... , n) and d is the number of

integers common to the two sets. Then, the variance of Ur,n can

be expressed [2, p. 25T] :

(2.5) Ver(U ) (m) (a) 1 Z (r)( m-r ()m-
MIA r r rc d r-r b

Next, according to Fraser [2], the class D of pairs of cumula-
tive distributions, F(X) and G(Y), for U may be consisted of all

M, n

distributions uniform within intervals. (For definition, see [2].

Particular examples are: a) a class of pairs of absolutely con-

tinuous distribution functions or b) a class of pairs of discrete

distribution functions.) Then, an important theory regarding the

variance of Um,n is also given by Fraser [2, Theorem 7.1, p. 28

and Theorem 2.1, 2.2, p. 14],

Fraser's Theorem

If the class of pairs of distribution functions includes all

distributions uniform within intervals, mentioned above, then for

m, n > r, U is the unique minirm- variance unbiased estimator.

Rosenblatt (10] has obtained the following Lemnas:

Rosenblatt's Leoma 2.4 For 1 < c <g <r; 1 < d< h <r, one has

(2.6) g bco : c bgo , h bod < d boh, an
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(2.7) o0 Lcd_< L•, <hLe

Led bcd " bco" bod - E1*,dd(1c; 2d) " *;o(l) " *ýPd)
Rosenblatt's Lenna 2.2 Var(Un) has the following upper and

lower bounds:

Va(%.) 2 bl 2 bo I i.

Var(+ )> b I-

i (2.9) Var(U mn) ro A or M rr

In the above discussion, concerning Urn only, it is assumed

that m and n are fixed numbers. h.ow, if m and n are not fixed but

the total number of observations on populations X and Y are re-

stricted to be a fixed number N, i.e., m + n = N, we shall denote

such a two-sample statistic by UI instead of Unn. Using the

I quantities blo, b.l as defined in (2.4), the following statement

can be made on the lower bound of the variance of U.

Rosenblatt's Lermma 2.6 If the ratio m,'n satisfies

0 < a, m/n < a2 < co, as m, n -> oo

then

Var(U) _ (r 2 /m)blo + (r /n)bo 1 = V', say,

i.e., V1 is the lower bound of Va'r(D) and V' is actually the

asymptotic variance of U.

S4ow, V' as defined above can be minimized by selecting the

Sbest values of m and n subject to m + n = N, and m, n > r. One

finds that the best choices are

I



(2.10) m0 * N(blO)*/[(blo)ý + (bol)A] - NQ, say, and

no N N - mo - N(l - Q).

These values for the sample sizes, represent the best allocation

of N observations to the populations X and Y. They depend, how-

ever, on the unknowns b1 0 and b 0 1 , which represent a partial in-

formation about the distributions F(X) and G(Y) and have been

assumed to be positive quantities. In other words, these sample

sizes can be computed and the corresponding D statistic can be

constructed only when b10 and b01 are positive and known.

The minim-n value of V', denoted by V0 is found to be

(2.11) V0 - N'11r(b1 o)i + r(bol )J]2 _ V*(1, n) .

It is clear that V0 is at least as small as the variance of any

estimator of e based on U-statistics subject to the restriction

that m + n = N. Hence, V0 is the minimized asymptotic variance of

D, when the best allocation of N observations to populations X and

Y is made. It will be used as a basis for comparison in the re-

maining sections. In particular, it will be shown that there

exist two-stage two-sample statistics, say U', such that

Var(U' )/V0 converges to unity as N approaches infinity, even though

no prior knowledge of b 1 0 and b 0 1 is required to compute Var(U').

3. Formulation of the Problem: the Two-stage Procedure and the

Estimator

In this section, a two-stage statistic U' will be defined.

The major result of the investigation on U1, which will be present-

ed in Section 4, is to show that with large samples and under
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I
certain conditions -ihe variance of U' approaches V0 of equation

S(2..11). No prior kaoledge of blO and b1 is required to obtain

! U'.,

Definition of U'

Let the total number of observations from populations I and Y

be fixed at N where N > 6r. At the first stage, N observations are

made on each of the two populations, where N > 2r and 2M < N - 2r.

From these 2M observed values, we shall estimate the parameters

bl0, bl 1 . It is observed from (2.1) and (2.4) that blo and bo1

are estimable functions (4]. There exist two associated U-

statistics, called T10 and T. 1, which are unbiased estimators of

b10 and bO1 respectively. The symnetric kernels of these two

statistics are functions of 2r X's and 2r Y's. Thus one can ex-

press T10, To1 as follows:

-1 -M M -2
(3.1) T10  (2 2r )o()] " (2r) Eh(Xi •( j

2r r 2 12r 2r

(3.2) To, - (N NM ) 011yl ( N E (R2 ; t

where the sumations are taken over all sets of integers,

1 < i < i...< <M3; z<Jl ... <1Jr-51"

In analogy with (2.10), we define

i (3.3) Z - (T1o)* [(To0 )i + (T1o)i]l", for T10, To, positive

Z - 0 otherwise.

After TIO, To1 and Z are computed, the second stage is con-

structed by taking mt more observations on population X and n'



10

more observations on population Y with m' + u' - N - 2M = Nt,

where the sample sizes m' and n' are determined as follows:

mI = [N'Z] when r/N' < Z < (N' - r)/N'

(3.4) m' = r when Z < r/N'

m' w N' - r when Z > (N' - r)/N'

and n' = N -ms

where [a] is the largest integer contained in a.

With m' and n' so defined, the statistic U' will be defined

as the estimator of 9 (see equations (2.1) and (2.2)) based on m'

and n' observations on populations X and Y respectively.

(3.5) Us MI (r Er t (XIYr
r r

where the summation is taken over all sets of integers,

M +l<i < 1 .< ...<i<M+M;M+l<j1< .. <Jr<M + n2.

In other words, U' is explicitly a function of the sL.cond stage

observations only. However, the sample sizes m' and n' are in turn

explicit functions of the first stage observations. Hence, im-

plicitly, U' depends on both stages.

Finally, notice that the allocation of N' observations in

(3.4) is the same as that of (2.10) with Z in place of Q. It will

be shown in Lemm 4.2 that if M -> co, then Z -> Q in probability.

Consequently, the probability of the first case of (3.4) occurring

approaches unity and the contribution of the other two cases to

the variance of U' will be negligible, as N' -> co. Thus one may

dispose of the other two cases and replace (3.4) by m' -N'Z and
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I
n' - N'(1 - Z). (Note that the brackets of (3.4) for m' and n'

will be left out hereafter, since its contribution to the variance

j of U' is also negligible, as N' -> co.)

REMARK: In the two-stage procedure, equal number of observations

on populations X and Y are used at the first stage. Intui-

tively, when r a s occurs in the kernel 0 in a natural vay

(i.e., no argument of t is identically zero), and there is no

information about the relative sizes of b 1 0 and b0 1 , equal

size samples seem appropriate to the symmetry of the situa-

tion. When r 0 a, but one writes 0 as a function of max(r, a),

one might doubt the appropriateness of the equal seaple sizes

at the first stage.

I4. Asymptotic Efficiency of the Estimator

It is mentioned in Section 3 that if N -- w co with M -> oo

and N' --i oo, then the second stage sample sizes (3.4) can be

replaced by;

( m' N'Z; n' -N'(l-Z)

where b10 and b01 are assumed to be positive.

In this section, it will be shown that under certain condi-

tions, the ratio between the variance of U' (defined in Section 3)

and V0 will asymptotically approach unity. (Recall that V0 is the

ormallest of the variances of any one-stage U-statistic estimator

of 8 subject to the restriction that m + n = N. V0 can be computed

only when b10 and b01 are known and the best one-stage allocation

of L observations to populations X and Y are made.) The proofs

are presented in Theorem 4.1. First, U' Is shown to be unbiased.

i
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Then, in Theorem 4.1, N Var(U') is partitioned into two parts,

namely, when IZ - QI is less than M"P for any p within the range

10 < p <.; and when 1Z - QI is greater than W"P. (Recall that Q

gives the beat allocation of N observations and the basis for

evaluating Vo, see (2.10)). By the results of Lemmas 4.1 and

4.2, it is concluded that the second part is of the order of mag-

nitude of O(M"2÷ 4P N). The first part of N Var(U') is shown to be

of the order of magnitude of (r(b 1)0 + r(bo1 )*)2 + O(MNN) +

The first term of this expression is equal to N V0 . Now, under

certain assumptions (see Theorem 4.1 below) concerning the relative

order of•m•gnitude of X end N and 0 < p < i. Itwillbeohm

that O(9"2+P N), O(M/N) and. O(MP) converge to zero as N approaches

infinity. Hence the ratio Var(U')/V0 converges to unity, which is

the result of Theorem 4.1.

In Section 3, it will be shown that the best choice of M

(under the assumptions of Theorem 4.1) is equal to KN6,/7, where K

is a maon-t•o inbown constant. The resulting value of p Is 1/6.

Thus the ratio of Var(U) to V0 is equal to 1 + O(N1l/7).

Le.ma 4.1 Let e(F, G) m 8 be an estimable parameter with

symnetric kernel S w S( r; ir). Let W - W be the associated U-

statistic with X observations on populations X and Y with cwiula-

tive distribution functions F(X) and o(Y) respectively. Assume

that the 21th moment of the kernel is finite. Define:

a) W'o W 0,O b) 8 o-St0 and , ) 8 ý t'

then for any positive integer 1,,
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i!2I E(w' )21 - (2i)z (E(s' )2]i ÷ (M•

Proof: For convenience, again let r - o. Also define:

k-l

k-i
E St here k -M/r

t-o

W" Is an average of k independent and identically distributed

"random variables with mean zero. From the work of Tchouproff 12),

I one has

2 1 k-1
t-O

i 2±k.

(0 ÷o("')+)

We now prove that W' can be written in terms of W" as follows:

(-2.) W' - (M!)-2 Z W"(%y ) )

where the sumnation io taken over all permutations of (hl,...,)l

I(1''." IM) of (1, 2, ... , M). tsarting with the right side of

I (4.2),



2k-i
¢(M)" 2 L'" w" (M')Y2 .1 •.s(•;•

tw0 rtr,rt rt+r, rt

1 k-l 2

two rt+r,rt Yrt+r,rt

1k-l M-"2
= ¢r £'( )

t=0(1 rt+r,rt" rt+t,rt

where El is taken over all sets of integers,

1 < hrt+l < ... < hrt+r?_ M; 1 < Jrt+l < . < Jrt+r- M,

for all t = 0, 1, ... , k-i

Then,

(M!),
2E Wn 1 k-il(M:)2r.W=• E W' - W,

twO

Next, since

(W,)21 _ [(M!)-2• wn] 2i < (W#,)21

one has

.(w' )2i < ].w,,)2 , (21) [var(s'w)i + O(k-i-l
-- ~i !2Yk

= O(kIi) = O(M")

The lemna is proved.

LTaa 4.2 Let Z and Q be defined as in (3.3) and (2.10)

respectively. Assume for 0 <p < , i is an integer, i > 2,

that * has 41 th finite moments. Then

pr,[z - QI > M"p o(_"i4 iP)•
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Proof: Write

PrlIz - QI > M'•J - Prhz - QI > M; T1o, TO, > 01

I+ Pr[IZ - Q1 > MiO; T1 0 , To1 not both positive]

i - + 01 ( T < °

L(T~~~l)0 10T0 T,) TO

+ Pr[l :5 lo + PEo] • < ol

Write,

Pr- (T1 0 )A > Q+ kpj

[,(TO,)'+ (T 10 A)

- Pr[(TI0  > (Q+ M .,)(T ) + (I + MP)(T) •

{-Q- - -

One notices that

10 Q p 2T°I Ib 1°0 Q(+- )° 2b

| is a U-statistic with mean zero and its kernel is

h -( + M )g] b 1 Q+k 2
- -Q-M g 1° - - ')° 1  ,

j where g, h are defined in (3.1), (3.2) respectively. Since blO

and b are assuned positive, one has 0 < Q < 1. Also, for M

large, one can choose M < min(Q, 1 - Q). ThuA
SM-
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+ M-P )2

"=-[bo " (-. Q 1- M

bb1S-[bz 0 ( ," )2(1++p"1 Q(4 - 47 01

10o + bo 10 (1 + z-.T 7 + o°(M']

2M "P 10o + o(M'P)

7Q4 - Q)

Hence the last quantity is positive for small M-p.

Using Tchebycheff's inequality of the form,

pr- Ix, > a] <a-21 E(X)2 i, one has

Pr ([T°O -'( Q + M T " [b10 -(Q+M"--b" O 2l-Q-M boll

> -[b° (10 + k- p)2b01
1 Q - M

E . ( T10 + T 0 1 ]2 - [b 1 0 ( M 'P 2b O i l 21

"< 1Q - M "-

[b1Vq M'P _p2 bol"

ri M-i ara h-( Q M P )..)

< 1!2z IV 1- Q-

- 2M-P b10 oQ(l - Q)31- + o(Ml)•}

by Lemma 4.1, and is equal to 0(k"i+iP) for M large.
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Anialogously, one gets,

upr{f(( Q M - 1'Ti )2 To -T bl 2
0110 - L(+ Mb+ - b 1 0

> _ (.Q _ -p) b 01 - blolI
1 - Q + J-

(1'r M-t r U-a M g -), h~

[2W-P b 0 1 IQ(1 - 01- 1 W

-O(M±i+2P)

I ~Similarly, using Leaw- 4.1,

IPr(T 10 <50) = Pr(T 10 - bl < -bl0) Pr(IT 10 -bl 01 bl0 )

fE(T 10 - blo)2 1

=ONiC'), and

Pr(T01 <50) oi()

Therefore, Pr(jz -I > M-P) O (M± i42p) + 0(M-i) M-+i.

LoemA 4.2 is proved.

Theorem 4.1 U' is an unbiased estimator of 6, i.e.,

E(U') 06. Also, if
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(i) Limit N exists and is finite for some 1, such

that 1 <• <2.

(ii) the eighth moment of 0 is finite, and

(Iii) blO, bol are both positive,

then

Em[ Var(U'gI)ALimit Var(U') =- Limit EmV m 1.
N -> 00 V0  N--> 0o VO

REMARK: In most non-parametric problems, the kernel 0 is bounded,

hence all moments exist. Therefore, the restriction (ii) is

not severe. Var(U1,) denotes the conditional variance of U'

given m' and n', and Var(U') denotes the expected value of

Var(U1.), where the expectation is over m' and n', or Var(U')

is the unconditional variance of U'.

Proof: Notice that m',n' are defined to be greater than r,

and that they are functions of X 1 ,..., XM; Y',..." YM only. On

the other hand, all the arguments of 0(1kr; YJr) in the definition

of U, (see (3.5)) are functions of XM+I, ... , XMmt; YM+"'

YM+n' ' Thus the arguments of U1 are independent of X1 , ... , XM;

YI, '.' YM' Therefore,

E(U') E rEE(U)

-n ,-l

rIL rLLr~

Henc,) (r) i ae

Hence, U' is unbiased.
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How, let C = condition that Jz - QI <M'P

C' - complement of C,

0 < 9 <g (see LeamA 4.2 for i

? Var(U') -N %ri var(Ut•)

N U Pr(jZ - QI >kp) 3 'ic' Var (U',)

Using the fact that E,•, Var(U' 1 <Var(Ujr) b rr Va(O)o

which is bounded, by assumption (ii), ard

Pr(Iz - Q1 > MP) -- o1 0 < p <

by Lenzaa 4.2, one obtains

N Var(U') < T %,cc vE(Uvt) + T,1.o(M"2+4p)

It is easy to show that there exists a number A which is indepen•l-

ent of M', n', such that

Vr(U,) < blO)/a' + (r2bo,)/n' + A/min(,' 2 ,n' 2 ).

The procedure is to expand the terms of Var(U3 t ) and its combina-

torials and then to substitute a fraction by unity. Consequently,

one finds that the first two terms are less than or equal to

(r 2 b1 0 )/m' and (r 2 b0 1 )/n' i'espectively. For the rest of the rxr

terms, we substitute again a certain fractioa by unity and find

that each term has donominator less than or equal to min(m' 2 ,a' 2 ).

Hence we find that A may be taken as the sum of all the rxr values

in their auaerator', widc.- ce corposced uo' i,% and. bct'5, c,d

1, 0, ... , r. One has

I.
Ii
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g r2
B, Vmr(U',I) <E 0cc; [,bl+ b

DI'mC m a ~ c 1. M1 mj(, 'nZ)

Also, when Iz - QI :5 m7 and vT -- o, mn', n' can to writtn as

MI > III M"P), ni'> N'(1.QbfP) Thus

NVar(U I) <Nr2b 10 1jr2 b01
IT Q- M-P) u'O. - Q M-P

+ KniAi'i 7 ~) + 004-2+if4"

-(N/I1
t )(r(bl0)i + r(b., ~2 [ + 2M M_ +

+ O(N )+ o(M-2+ 4 pV)

[i( + 2MN1  + o(MN'fl)][r(b10 )1 + rb0)1

[1( + 2M-p + O(M-Ph] + O(NN'2)+ g-+po

a(r(b 10)I + r(b 0 1 yi2.il + O(N('-P)'1) + o(NI-'/1)

otter putting M = K (IT1/A), where K is an unknown non-zero constant.

6ince, by assumption (i), I < 0 < 2, there exists p, so that

o < p <;1, and (-2+4p~p) <0o. Finally,
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Limit xa..2 .Limit SI, Vw(U ,)

N - oo V N --> oo O

- Limit N EI Var(UMt)
N -- > 00

Ludt [r(b10 A) + r(b 01 A)3]
N oo r(b 10A + r(b 01)*J2

[1+ o(N( /11) + o(1 f"p/l)

+ oCN (-2+4p4A)/A
-- 1 .

Hence, the theorem is proved.

In addition to U, other two-stage estimators of 8 can be

defined. For example, if 6 is estimated separately at both stages,

then one can combine these two estimates by weights. This paper

will not include any explicit discussion of such estimators. On

the other hand, the following one-stage statistic will be dis-

cussed.

Assume that N observations are to be made, and that the b cd'

are unknown, (except that blo, bol are positive), then proceed as

if b = bo0 . The variance of a one-stage U-statistic is minimized

with respect to m, subject to m + n = N, when

m - N/2, n = N/2

Let the statistic be denoted by Ue, then its variance is given by

Var(u*) = N"1 2r2(b10 + b01 ) + O(N"2)

Hence,

I,
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(I43) Liit Var(e)~ Limit N Vaw(U
N-->0oo V0 N-> oo N V0

Limit 2r 2(b 10 + b 01)0 1

N -- oo _,+0(N~l
J->c r(bjo)* + r(boz)Ftr_

2(b10 + b•01 ) 214 + 2

[(b 1o)* + (bo,)3]2  (1 + P?

where
p -(b. lO)•

When p approaches 0 or oo, (4.3) approaches its maximum 2. Thus,

comparing the results of Theorem 4.1 with (4.3), an appreciable

decrease in variance can be obtained by using a two-stage proce-

d~ure.

RDUMAK: For s ý r, if we write * as a function of max(r, s) X's

and Y's, the choice of m, n shall be Nr/(s + r) and Ns/(s + r)

respectively in order to minimize the variance of U assuming

b10 - b 01 A simple computation shows that the variance

ratio approaches 1 + s/r as p approaches zero and approaches

1 + r/s as p approaches infinity. Thus the variance ratio may

have a maximum, for r s, greater than 2.

5. "Optimal" Choice of the Value M Relative to N

"Optimal" choice of the value M (swmple size of the first

stage) relative to N (total sample size) will be studied in this

section for the following three cases:
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i
a) The first eight moments of the kernel s exist

I For this case, we proceed as follows. From the last step of

1 the proof of Theorem 4.1, one has

var(u' )/vo - 1 + o(A"(-')) + o(1 "P) + o(k"2+lI4P)

A heuristic method for finding the best a and p is to find the

solution of the pair of equations listed below, which are obtained

by examining the exponentials in the remainder terms of the above

equation.

1 ¢~5,1) •-l1--p

(5.2) p=2-- 4p-

and get I = 7/6, p 1/6, thus M = K(N6/7).

Actually, this pair of values is the "optimal" solution, be-

cause it is easy to see that any other choice will make one of the

three terms have a larger order of magnitude than O(M"1/6) (or

equivalently, O(N'1/7)). Therefore, Var(U')/V0 = 1 + O(N-1/7).

b) All moments of the kernel i exist

By Lemma 4.2 and Theorem 4.1, for general i, i > 2,

0 < p < (i - 1)/21, one has

var(u' )/v0 = 1 + O(N(('l)) + o(m-P) + o(M1 i+2ip*V)

Similar to the above case (for i = 2), one solves the two equa-

tions:

".(5.3) 0- l=p

I (5.4) p=i-21p

I
!
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It is foun that A - (31 + 1)/2(l + i)an

p - (i - 1)/2(1 + i) is the set of solutions. When I approaches

infinity, S approaches 3/2 and p approaches 1/2. Therefore,

M .K(,1(1+i)/(3±+l)), where 2(1 + 1)/(31 + 1) has 2/3 as a lower

bound. This bound, however, is not obtained. Thus when $ has all

finite moments,

Var(U')/V0 = 1 + O(t-"1+(1+i)/(3i+l)) for any i.

c) The kernel * is bounded

First, it will be shown by the following Lemma 5.1 that

Pr(IZ-Q > e') < O(e'e2 M), where e is the base of natural

logarithm and el is some small number. Consequently, an "optimal"

choice of M can be obtained in an implicit form.

Lemma 5.1 (Hoeffding's inequality, see [5]). Let Unn be a

U-statistic with n observations on any two populations X and Y for

estimating some parameter 0. The kernel of 0 is S(2; t.),

a < S < b. Then for any positive number e',

-2e,2[ n

n(U,n - > e') < exp max(r,s)
-r( (b-a) 2

for n large, = exp (-O(e' 2n))

- O(e ei2n) .

Now, from the proof of Lemma 4.2, And neglecting the smaller

order term



r2.
Pr(Iz - QI > e') - Pr(Z - Q> e') + Pr(Z - Q < e')

( + e2 2 + 01 2

>'a510 " (1 u- Q - r' 01 1 0

>~ ~ ~ (rbO l - + e) bil

Pr 2ele') 2

> Q et2

",l-q• .) bo " bio

Applvin Tam 5.1 and assuming that r - s and

2 
4 -2 e2 )2

-2[(b..) g • 1 _0 ( , + e-2<b

1 - q- r

+ ep"q + e' ) 0o1 " o0 M

S( _K4- 2)

*O(ee j2M)

Hence, one has

var(U) 1 + O(M"I) + O(e,) + O(e-e' 2M)
Vo

Using a similar approanh as before, i.e., requiring the three terms

to have the some order of magnitude, one has,

(j.6) log e' = -e'2MI
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Substitute (5.5) into (5.6),

log e' - -e 3N, hence

(5.7) N - -log e'/(e)

(5.8) M - -log e'/(e')2

From (5-.7), (5-.8), )N" 2 = -log e' = log(e')"'. Therefore,

M79 = N2/3 log(e' )-1/3.

Taking logarithm on (5.7),

log N - log liog(e')" 1 ] - log(e'),

- log [log(e')Y'] + 3 log(e')'.

It is seen that for e' small,

(3 + A•) log(e' )- > log N > 3 log(e' )l

Substituting the inequalities into (5.7) and (5.9) respectively,

one has

M < N2/3 [1/3 log N]1/3 a N2/3[log N1/311/3

(510) M> N/3 1/0-1-) log N]1/3 = N/3[log N/(36)313

By (5.5), m - Ne' , one has

"N_1ýJgNl3&]1 < e' < N" 1/113 og •l_ /

Therefore, in the case with $ bounded,

var(U')/Vo - 1 + o(N'1/3 1)

where I is some value between (log 1/(3+ A))1/3 and

(1og N'13)113 .
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I
6. Some Examples

6.1 Consider the Wilcoxon Statistic. The class D contains all

pairs of cumulative distribution functions F, G which are con-

tinuous.

f e0 - Pr(X > Y) with the kernel

f(xv, Y5) - 1 If x > 5

= 0 otherwise

In this case, r = s = 1. The nuisance parameter b1 0 , b0 1 and

b1 1 are

ibO 10 Pr(x 1 > Yl, Y2 ) - LPr(x1 > Y1 )]2

bo0 1 = Pr(xl, x2 > yl) - [Pr(xi > Y)] 2

b 1 1 = Pr(X > Y) - [Pr(x1 > Y

It can be shown that

b =o = 2 Pr(x > Y1 > Y2 > >"2)

bol -2 Pr(Y1 > X > X2 > Y2 )

b1 1  Pr(Xl > Y1 > X2 > Y2) + Pr(Y. > Xl > Y2 > X2)

+ 2 Pr(X 1 > Yl > > X2) + 2 Pr(Y > x > • > Y2 )

The estimators of blO, b0 1 are respectively,

.0 () (M E 2h(Ri ; t )11 _1 < i 2 <M _<j 1 <J 2 <M 2 2

TO, M-i -;
2l2)1 1< 2<M 1J< 2 -<M 2

|
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where h(i2 ; T) 2 1i/4 if the two Y's are ranked between the

two X's.

- 0 otherwise.

g(•I 2 ; ) = 1/4 if the two X's are ranked between the

two Y's .

- 0 otherwise.

Here #, g, h are all bounded. When G is neither zero nor unity,

only one of the bl 0 , bol can be zero. Moreover, it can be shown

that whenblO . 0 (bol = 0), b01 = b11 = 0 - 82 (blo = b -l =

e - 62). If it is assuned that F, G are both strictly monotone,

then both blo and b01 are positive. Therefore when F, G are both

strictly monotone, the two-stage procedure is applicable. Since

in this case # is bounded, one shall choose M between

12/3[log Nl/(346)]1/3 and N2/3[log Nl/3]1/3.

6.2 Assume 8 - E(X) - E(Y), where independent observations on

populations X and Y are made with cumulative distribution func-

tions F and G respectively. The class D contains all cumulative

distribution functions with finite expectations. Then e is

estimable. The kernel is 0 = Xi - Yi and again r = s = l. In

this case, blo and b01 are the population variance if they exist.

The kernel of blo, b01 are J(Xi - XJ) 2 , i(Yi - Yd 2 i < J,

respectively. The corresponding U-statistic for estimating bl0,

b01 are the sample variances, which can be expressed in the follow-

ing form:
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T1 -2 (i-X )2

i <J

In this case, the kernels are not bounded, unless the distri-

butions of X and Y are bounded. blo (bOl) is positive if popula-

tion X (Y) is not a constant with probability one. To apply the

theorems of this paper, the distributions of X and Y must have

finite eighth moments. One may choose, say, - NE/7.

If D contains normal distribution functions only, Ghurye and

Robbins have given exact results for small samples [3].

6.3 An example where the theorems of this paper do not apply.

Let the parameter be 9 = [E(X)] 2 
- [E(Y)] 2 , and let F, G belong to

any class D such that populaticns X and Y have zero mean and all

finite moments. Now the corresponding symmetric kernel for esti-

mating 0 will be e = XiXj - YIY Then the kernels for b1 0 , b0 1

and b are of the following forms respectively:

(xI2 - Y1Y2)(xix3 - Y3 Y4 )

(X1 X2 - Y3Y2)(x 4 - Y2Y3)

()xh - •j2)(XlX3- Y1Y3 )

Since it can be shown that each of these has zero expected

value, one cannot use any of the results of this paper, However,

the theory of U-statistic is applicable and one needs the kernels

for b2 0 and b)2, which are given respectively by:

I.



30

(X112 - Y1Y2 )( 2 - YYj)

('.% - Y1Y2 )(x314 - YlY2)

Then the expected values of these kernels are:

E(4 x4) - Lvar(x)) 2 > o

E(12 Y) - [var(Y)J' > 0 , respectively.

Special attention should also be paid to the fact that in

this case, the associated U-statistic may not be asymptotically

normally distributed, see (10].

7. The Asymptotic Distribution of U'

In this section, it will be shown that U1 is asymptotically

normally distributed. Let us consider first, two random variables

Y' and Y* defined as the following:

Y' (U' - 0)/(E. [var(um, )1A

Y*= U~qIC:.1 l-8l(var(uNQ,•,(l-a))]½

It has been proved by Rosenblatt [10, Theorem 2.2] that Y* is

asymptotically normal with mean zero and variance one. In what

follows, Theorem 7.1 shows that Y' is asymptotically equivalent

to Y*, thus also asymptotically normally distributed with mean zero

and variance one.

Theorem 7.1 Y' and Y* are asymptotically equivalent, i.e.,

P-lim (Y' - Y*) - 0
N' -> co
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Proof: In order to show -that Y' and Y* are asymptotically

L equivalent, it suffices to show that

tE(Y' - Y*) 2 -> 0 as N~' -> coo

Now, E•Y' _ y,)2 = E(y,) 2 + E(y*) 2 _ 2E(y'y*)

From Theorem 4.1, U' is an unbiased estimator of 6 and Y' is its

normalized form. Hence E(Y )2 - 1. By assultion, E(Y*)2 = 1.

Also, by Theorem 4.1,

E ,Var(Um,) = (1/N')[r(b + r(b )*]2 + o(N' 1')

m m 10 01

and

Var(UN'QN'(lQ)) = (r 2 bl 0 )/(N'Q) + (r 2 b0 1 )/(N'(1-Q)) + 0(N' 1)

by Rosenblatt [10, Lemma 2.6). Therefore,

(7.1) E(Y'Y*) E[(Uo - 6)(UQ,Nr(.Q)-9).

t[Em'V~a(UMni )]Var UN'Q,Nz(1 -q)1j

= N'r(blo)2 + r(bol)J]-
2 E[(U' -

Now let U be the statistic U5 with the kernel (R r Jr), and
r r

be the statistic UNIQ,N;(IQ) with the kernel

1 r Y Also let;
r Jr

C = condition that N (Q-M.p) _< m' < N'(Q+1.1-), ¼ > p > 0

C' = complement of C.

Then, one may writeI



£(Y'Y*) WLr(b1)~ + r(b 0 r]2

+ IN'[r(b, 0)i + r(b *~]-

. LN{Ema ,,IcCt' .) (InN la N ff( 1Q))fIm, cc1}Pr(m' cc,

Now notice that E(YIY*) is the correlation coefficient of Y'Y? and

since both Y' and Y* are functions of' random variables XM., ..

XHJ'+; YM+l' *** n, , one has 1 > E(Y'Y*) > 0, and for anym,

n' > '

E {EI-mCI(UD' :NIQ i'(l Q)ImceC )I}Pr(M"4EC') Z 0

Consequently,

E(Y'Y*) > rb~ Nt ~ ~2EECUIU:,:l~me

*pr(mleC)

10 01

+ 0(Mf2+
4p+V)

by Lemmina 4.2, where ; denotes some value in the interval

(.PM"P). Notice,

r r r r

FIY Y(*(Iir ýr W 2r; tr)
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vhere EV Z•, £3, L1: ae s•us over all sets of integers,
iM + 1 < il < ... < Ir < '(Q. + )

M +1<j1 < ... <Jr <N'(1 - Q -

S+ 1÷ < k < 0.. < kr < N'Q

M + 1 < ti < ... < tr <N '(l - Q), respectively.

The expectation of '(1i ; r r)#,(kr; Yt r) is zero when the

sets (il,..., ir), (kl,..., kr) have no integer in common and the

sets (jil... Ir', (tl'"...I tr) have no integer in common. On the

other hand, the expectation of it will become b cd if there are c

common integers in the former pair of sets and d common integers

in the latter pair of sets. Therefore, the number of sets having

(c, d) integers in common are: for all e non-negative,rt'Q)(N'(Q+-e)-c~t~N(--) (-)d

(7.2) (r)(NQ)N(1 e..)(r)(N1(l..Qe))(N1(I-q).d)
(72 c" r "" r-c "d" r )('r-d

and for all ; non-positive,

r r-c d r " r-d )

Note that for e identically zero, V Y*

Consider (7.2), which, for N' large, is

(7.4) 1 2(NsQ)r[ c r(Q+-).c rc 1
cU[(r-c)Y] d:[(r-d)U]2

IN'([N'(1-Q)-djr' + lower order terms

cd,[(r-c),(r-d)!] (N')Ir-c-d Qr(Q+-)r-c(_Q.)r(.Q)r-d

S+ o[(N').r'c-d I
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On the other hand, the coefficient before the sumation sign is

(7. 5) (N' (1,4e))' 1( N'(l-qZ ) 1 ) )' I( 'Q) N' f( -Q))'

r ( r r

S(N')- 
r(lQ-)'r(Qe)'r(l-Q)rQr(r) 4 + o[(N' )-4r]

Combining (7.4), (7.5) and the above discussion, one has

E(JI(Q+e),N (l-Q-e) UN'QN'(I-Q))

r r I 4r-c- 1)r-d

E 2 (N')4rcr(lQ)-
c=O d=O c~d![(r-c)!(r-d)!]2

(c,d) ý (0,0)

(Q 4 )r'c( 1-Q-•)r + o(Nl 4r-c-d)

I [(N' )r(lQ-)r(Q+e)r(l-Q)rQr(r! )- + o(N')1 r]"-

- E (r!) bcd/f (N• ~(Q+\C)(.q) c'd.[(r-c),(r-d).
c=O d=O

(c,d) ý (0,0)

It is seen that for smaller c + d, the term is large, and as c + d

becomes large the term becomes small in order of magnitude. Re-

taining the largest order of magnitude terms (c, d) = (1, 0) and

(c, d) = (0, 1), one has,

E(il(Q÷;), N' (-Q-;) UNIQN (I-Q))

= rb 10NS'(Q.i)' + A o1N"1(1-Q)'Z

= r2 b1 0 (N,)-IQ-l[l + ;/Q]-I + r 2 bo0 1 [N(1-Q)]-I + o(N,- 1 )

. r 2 b 10 (N,'Q l(l[ + O(e)] + r2b01 [N' (l-Q)] 1" + o(N1'l1

- (N')[r(b01)1 + r(b 1 o0)]2 + 0(N'P),

where e -> 0 slowest for e near MiP .



I

With essentially similar steps, one vili find the see result

I fIt is non-positive. Thus

i > .(yy*)> ,' II [r(b10 )i + r(b 01 )]2

_ r(bl0)* + r(bol )J]2L Ng

+ O(N,'-1,)l} + O(2+4pýS)

or 1 > E(yy*) > 1 + O(M-P) + o(M•2+4p41P)

Therefore,
Limit E(Y' - y*) 2 - L t (2 - 2 Limi

N ---> 00 Nt-"

I + O(N P)] o

Theorem 7.1 is proved.

Corollary 7.1 Y' is also asymptotically normally distributed

with mean zero and variance one, or, Us is asymptotically normally

distributed.

Next, in the expression for Y' defined above, if one substi-

tutes the estimated variance in terms of the values of T1 0 and To,

in the variance of U' (in terms of the val- "b of b and bol),

since TIO and To, are efficient estimators of blo and bOl, the

resulting standardized random variable Y' is also asymptotically
5

I normally distributed with mean zero and variance one.

Theorem 7.2 (U' - e(U"'r(T 1 o), + r(Tol )•is

asymptotically equivalent to Y'.

j Proo: It suffices to show that N"½ (r(T 10 )i + r(T0 1 )f) is

asymptotically equivalent to Ni" (r(blo). + r(boo)i) (see (6],

I Theorem 5 and applications), i.e.,

I



P-limit (N'4I (r(T 10 )ý + r(T01 )ý) - N'4' (r(b0)i + r(b01 )i)J 0.-

N'-> oo

In other words.s, it is equivalent to show that for any e' > 0,

Limrit Pr{r(Tio)2:1+ r(Tol)i - r(b 10), - r(b 01 )i > >e'N'lij0.

No, Pr {I r(T1o) + r(T01)ý - r(bl0)ý - r(b01Y)Il > e~i

:5 r r(T10) r(b 10 Yij + lr(T01)i - r(b01)ij > -N

(7.6)
* Pr[2jr(T10 )f' r(b10 )~i > e'N't]

+Pr[2jr(T l)i r(b01)1j > e-N'I

Using Tchebycheff's inequality,

E {2[r(T10)i - r(b10)i]} 2 E (2(r(Tol~ - r~boli)l 2

<Nlle 12  N le j2

Applying the id~entity (see [I) P. 3153),

ai- 8. a- b - )2

2(b7) 2 (b )t [at + bt

one has

E {2[r(T10)i - r(b10 A]l 1 2

r2  E(T10-blo 
)2 2E Tl-l)T-b 2

4n~ b'---- 10 4b i10b[(T 10 *+ (b~ 1)*2

+ E (T 10 - b 1 0 ) 4

4b10I(lot+ (bO)t

:5r 2  lB (T10.-b10)2 + [(T10-bl0)
3  (T10 ;bl 0) 4

310 +3 s + E b0b10 b10
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By Lemmu 4.2, and by the fact that it is also easy to extend it to

f= the case for odd moments of a U-statistic, i.e., E(U-8)2k 1' . O(Mwl),
S~one has

(T1 0 - b1 o)2
• •' ho ) = °(i'f)

2blo
E(T(02 - bjO)3 ) =O(M" ) .

E( T10 - b 10) 
4  0 2

b3o
10

Consequently,

(77) E2[r(Tlo) - r(bo)'2 O(N'Me2) -> 0i (7.7) 'e'2

with suitable choice of e', as N' -> co.

With exactly the same kind of argument, one has

B{2 Cr( To1)½ r(bo0 )'] 1 2

(7.8) --- > 0 as N--> 0.

Combining (7.7), (7.8) and putting them into (7.6), one has,

SLimit Pr(Ir(Tl10) + r(Tol)i - r(bzo)i - r(bol)½i > e'Nl']

< Limit O(N'Me' 2 )" - 0
N'-> co

I This proves the asymptotic equivalence of N14"r(T 1 0o + r(T01

and N'Wi[r(blo)A + r(b 01 A)] and hence the asymptotic equivalence of

iYS to 7'.

I
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Corollary 7.2 Y; is asymptotically normally distributed.

8. Extension of the Two-stage Technique to Functions of More Than

Two Populations

So far, the problem of two-stage estimation has been studied

with estimable functions (or parameters) of two populations.

There is apparently a possibility of extending it to functions

of more than two populations.

Let X(l), .o . be k populations (k > 2) with cumulative

distribution functions FI(X), ... , Fk(X) respectively. Also let

9 = O(F1, ... , Fk) be the fumctional to be estimated, with symmetric

kernel #(1(l) *.., j(k)) where 0) represent vectors of dimension

r, i.e., X(j) are r independent observations on population X(J)

The corresponding U-statistic with n3 observations on XW will be

k n. -1Un .. I uk (r i E
S k Ji=l ".r' Jk

where Ek is the k-fold summation over a set of integers such that

for each vector of integers, Ji, i - 1, 2, k, I_< J, < <

hr _ nil Analogously, define

a,, ... (l)aok) = x ))

where x(J) represent vectors of dimension a, aj = 0, 1, ... , r

for all j = 1, 2, k; 10) represent vectors of dimension

r - a i , (r - a i)=(jl.. r) for all J = 1, 2, .. ", k o
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b a,... ,• -k , As , ak

for vectors f(J) of dimension a *j ) a l, ... , r for all

3 1, ... , k.

Then when the variance of #1 exists, one can write

k ni -1 r r r.l r nkr
V0r(Uk) - [a (r) r .r- ) b

il a - -- ' a -k k ... %.

k
Now, when a fixed total sample size N is given Z n i N, and if

i-l
n -- > o0 in such a way that ni/nJ are bounded aay from zero and

one, for all i ý J, i, J - 1, 2, ... , k. Then the asymptotic ex-

pression for Var(Uk) is
k2

r (I)var(Uk)< : - b() kv ) ,a
i=l ni

whr (i)=b
whereb b o ., b with one of the subscript I at the

thi position and zero elsewhere.

Analogous to the case of k - 2, it is easy to show that V' is

minimized when

n (b ) Z (b()))_
i=l

and the minimized value of V1 is VO,

V0 - N' r(b( ))i

when b('), I = 1, 2, k.., ic are all known.

The two-stage estimating procedure will be as follows:

(a) Take M observations on each of the X(i), i a 1, 2, ... , k,

where 2rk < X4 < N-rk
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(b) Estimate the k unknowns b(1), i - 1, 2, ... , Ik, by, say,

TW.~

(c) Take m. more observations on X(i), i 1 1, 2, ... , k, such

that

m, - N,( i))'/ kE (T•,))I where N' - N -
iul

for estimator using only the second stage observations.

(d) Use Uk, the analogous two-stage estimator of U', to

estimate 0.

It can be shown, using essentially the same arguments and

under the same kind of conditions as in Theoren 4.1, but replacing

the condition (iii) by (iii'):

b(i) > 0, 1 w 1, 2, .. ,k

that the analogous result can be obtained. Also, the asymptotic

distribution of U1 is again normal.

9. Summary of Results on U'

In this section, results on U' will be summarized without

proof. U" is introduced in order to utilize the data from the

first-stage samples as well as the second-stage samples. (Recall

that U' is constructed based on the second-stage samples only.)

The first stage for U" is defined exactly the same as for U'

(see Section 3). However, in the second stage, m! (not m') more

observations from population X and n" (not n') more observations

from population Y will be taken such that m"" + a N' - N - 2M.

The sample sizes m!" and n" are determined as the following:
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[
m" -[ EZ] -M when (M + 1)/N < Z < (N-M)/N

"!(9.1) i" -0 when Z < (M + 1)/N

im" - N' -ihen Z > (N - M)/N

and ni o Nl - M!t

The statistic d' is defined as the estimator of 6 based on

HM + m" and M + n" observations on populations X and Y respectively.

The definition is:

(9.-2) Le . (Mr )( ) M(+1,;,)
r rr r

where the summnation is taken over sets of all integers,

l< < ... < ir<~ " 1<•<. <r M n"

The statistic U" is biased. However, by the help of two

Lemnas, the following theorem is proved.

Theorem 9.1 If the conditions of Theorem 4.1 are satisfied,

the z(U") - e + o(M7"+p + I4 ), and that

Limit E(U"-6)2 /Vo-1..•N--> cOD U,_92

Next, it is found that there is no "optimal" choice of M

relative to N so that the ratio E(U' - 6)2/V0 converges to unity

as quickly as possible. However, it is also found that in any

case, this ratio converges to unity not slower than the ratio

Var(U' )/Vo, if the same set of values of P and p are used.

Again, although "' is biased, it can be shown that, using

similar techniques as for the case of U', If is also asymptotically

normally distributed, either in terms of its variance or in terms

!
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of the estimated variance, i.e., with blo (b 0 1 ) replaced by T1 0

(To 1 ). Finally, using analogous steps as for U', +he results on

i' are generalized to cover the situation of sampling from several

populations.
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